Statically-informed Dynamic Analysis Tools to Detect
Algorithmic Complexity Vulnerabilities

Benjamin Holland, Ganesh Ram Santhanam, Payas Awadhutkar, and Suresh Kothari
Department of Electrical and Computer Engineering, lowa State University, Ames, lowa 50011
Email: {bholland, gsanthan, payas, kothari} @iastate.edu

Abstract—Algorithmic Complexity (AC) vulnerabilities can
be exploited to cause a denial of service attack. Specifically, an
adversary can design an input to trigger excessive (space/time)
resource consumption. It is not possible to build a fully
automated tool to detect AC vulnerabilities. Since it is an
open-ended problem, a human-in-loop exploration is required
to find the program loops that could have AC vulnerabilities.
Ascertaining whether an arbitrary loop has an AC vulnerability
is itself difficult, which is equivalent to the halting problem.

This paper is about a pragmatic engineering approach
to detect AC vulnerabilities. It presents a statically-informed
dynamic (SID) analysis and two tools that provide critical
capabilities for detecting AC vulnerabilities. The first is a static
analysis tool for exploring the software to find loops as the
potential candidates for AC vulnerabilities. The second is a
dynamic analysis tool that can try many different inputs to
evaluate the selected loops for excessive resource consumption.
The two tools are built and integrated together using the
interactive software analysis, transformation, and visualization
capabilities provided by the Atlas platform.

The paper describes two use cases for the tools, one to detect
AC vulnerabilities in Java bytecode and another for students
in an undergraduate algorithm class to perform experiments
to learn different aspects of algorithmic complexity.

Tool and Demo Video: https://ensoftcorp.github.io/SID

I. INTRODUCTION

Algorithmic complexity (AC) vulnerabilities [1], [2] are
rooted in the space and time complexities of externally-
controlled execution paths with loops. In the AC vulnera-
bility commonly known as the “billion laughs attack™ or an
XML bomb [3], parsing a specially crafted input file of less
than a kilobyte creates a string of 10° concatenated “lol”
strings requiring approximately 3 gigabytes of memory. At
the extreme, a completely automated detection of AC vulner-
abilities amounts to solving the intractable halting problem
[4]. Existing tools for computing the loop complexity [5], [6]
are limited and cannot prove termination for several classes
of loops [7]. Based on our ongoing research for the DARPA
Space/Time Analysis for Cybersecurity (STAC) [8] program,
this paper describes a pragmatic engineering approach to
detect AC vulnerabilities.

*This material is based on research sponsored by DARPA under agree-
ment numbers FA8750-15-2-0080 and FA8750-12-2-0126. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and
conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Government.

Our approach to detect AC vulnerabilities involves: (1)
Automated Exploration: Identify loops, precompute their
crucial attributes such as intra- and inter-procedural nest-
ing structures and depths, and termination conditions. (2)
Hypothesis Generation: Through an interactive inspection
of the precomputed information the analyst hypothesizes
plausible AC vulnerabilities and selects candidate loops for
further examination using dynamic analysis. (3) Hypothesis
Validation: The analyst inserts probes and creates a driver
to exercise the program by feeding workloads to measure
resource consumption for the selected loops.

Since detecting AC vulnerabilities is an open-ended prob-
lem, our approach strives to combine human intelligence
with static and dynamic analysis to achieve scalability and
accuracy. A lightweight static analysis is used for a scalable
exploration of loops in bytecode from large software, and
an analyst selects a small subset of these loops for further
evaluation using a dynamic analysis for accuracy.

This paper describes statically-informed dynamic (SID)
analysis powered by two tools: (a) a static analysis tool
called the loop call graph (LCG) to explore loops, (b) a
dynamic analysis tool called the time complexity analyzer
(TCA) to measure the resource consumption of loops. The
SID analysis is applied using the above 3-step process. The
main contributions of the paper are:

«LCG as a compact visual model to explore intra- and
inter-procedural nesting structures of loops. The LCG as
an interactive smart view that updates in response to
selections in the underlying source code or other built-in
graph models in Atlas such as the control flow graph of
a method. The LCG helps human analysts understand the
intra- and inter-procedural relationships between loops and
how they are triggered, which is crucial to hypothesize AC
vulnerabilities.
TCA as a dynamic analyzer that enables the analyst to
automatically instrument the selected loops with resource
usage probes. TCA generates a skeleton driver that an
analyst can customize and run with a workload to observe
the corresponding resource usage. It is laborious to extract
an executable loop slice and run it separately to measure
its resource usage [5]. TCA enables in situ evaluation of
time complexity of loops.
« Case studies illustrating the use of LCG and TCA for (1)
detecting an AC vulnerability in a web app; (2) educational

use to learn different aspects of algorithmic complexity.

The work represents a major engineering effort which
includes putting together complex static analyses for de-
tecting loops in Java bytecode and computing the crucial
loop attributes and nesting structures, instrumenting the Java
bytecode for runtime measurements of time complexity, cre-
ating drivers to apply different strategies to select inputs, and
plotting the time complexity. These individually complex
capabilities are integrated and equipped with an interactive
and compact visualization so that the analyst can experiment
with and understand the structures and behaviors of loops
to detect AC vulnerabilities. The LCG and TCA tools are
built and integrated using the Atlas platform [9], specifically
its APIs for static analysis, program transformations, and
interactive program graphs.

II. SID ANALYSIS TOOLS

This section describes LCG and TCA as the two key
enabling tools for SID analysis. LCG helps the analyst
to perform automated analysis to explore loops reachable
from a method (via a call chain) and select candidates
for AC vulnerabilities. After the analyst hypothesizes a
vulnerability, TCA enables the analyst to instrument the
code, and perform dynamic analysis to confirm or refute a
hypothesis by actually observing the resource consumption
for the candidate loops. LCG operates on Java source and
bytecode, while TCA instruments Java bytecode.

A. Loop Call Graph

The Loop Call Graph (LCG) is a succinct representation
of crucial information necessary to hypothesize AC vul-
nerabilities, namely the inter- and intra-procedural nesting
structure of loops and how they are reached through a call
chain. LCG represents the information compactly as a multi-
attributed directed graph. The nodes in the LCG are methods
containing loops and methods that call other methods which
also contain loops. There is an edge from method m; to
method mo in the LCG if mq calls mo. Further, nodes
and edges have color attributes. A node is colored blue if
it contains loops, and grey otherwise. An edge is colored
yellow if the callsite of mo is located within a loop in m;
(indicates that loops in mo are inter-procedurally nested),
and black otherwise. Explicit loops as well as loops due
to recursion are identified in the LCG. The accuracy of
LCG depends on the accuracy of the underlying call graph
construction algorithm. Our implementation of LCG allows
the flexibility to use different algorithms to manage the
accuracy by a suitable choice of an algorithm. Typically, we
use a class hierarchy analysis for computing the call graph.

Preprocessing. The loops in the bytecode are identified
using the DLI algorithm [10]. The information about loops
is computed and added to the program graph database stored
by Atlas [9]. This information is used when the analyst
invokes the LCG smart view.

(=] java.util

[=] G TimSort

call

= mergeCollapse

= reverseRange|

call call call call

= gallopRight

Figure 1: LCG smart view for TimSort along with the CFG
smart view (shown as a callout) obtained by clicking on
the minRunLength method in the LCG. In the CFG, darker
shades are used to show deeper loop nesting. LCG shows
11 methods in TimSort that contain loops.

LCG Smart View. The LCG smart view is an interactive
tool that enables the analyst to explore and understand loops
nested inter-procedurally.

First, the view itself serves as succinct visual index of
loops and their inter-procedural nesting. This is essential for
the analyst to hypothesize AC vulnerabilities because if m;
declares a loop I, and m; is called from a loop I’ in ma,
LCG helps the analyst to reason that [can be nested in I’
in that calling context.

Second, the LCG smart view is interactive. The LCG
smart view inherits 2-way source correspondence from At-
las. The analyst can double click on a method in the LCG
smart view to go to the code for that method. Alternately,
when an analyst clicks on a method name in the source
code window, the LCG window instantly updates to show the
LCG for the selected method. Since the LCG for real-world
programs can be large, to scale the visualization and make
large graphs comprehensible, the smart view allows users to
incrementally expand and collapse nodes at any level of the
graph, and offers a textual search to easily locate methods.

Third, the LCG smart view seamlessly integrates with
other Atlas smart views (e.g., control flow and call graph
smart views). The analyst can compose analyses by feeding
a selection in the LCG smart view as input to another Atlas
smart view. For example, if the analyst opens the control
flow smart view alongside the LCG smart view and clicks on
a method in the LCG, the method’s control flow graph (CFG)
is shown in another window. This is illustrated in Figure 1.
Along with the LCG view for TimSort [11] it shows the
CFG for a method selected in the LCG window. Overall, the
LCG helps the analyst to explore and understand the loops
interactively in order to hypothesize AC vulnerabilities.

B. Time Complexity Analyzer

The analyst can click on a LCG node to select a method
and then click the TCA button to perform a dynamic
analysis on loops in the selected method. TCA automates the
insertion of probes into bytecode, and records the runtime
measurements for loops. TCA supports two kinds of probes:

1) Iteration Counters. An iteration counter tracks the num-
ber of times a loop header (entry point of a loop) is
executed. Iteration counter measurements are platform
independent and repeatable for deterministic code.

2) Wall Clock Timers. A wall clock timer uses timestamps
to measure the cumulative time spent in a loop. Time-
based measurements, although noisy and inaccurate [12],
are nevertheless useful. For example, caching or garbage
collection side effects on the runtime are captured by the
time measurements but not through iteration counters.

Challenges in Inserting Probes. TCA instruments Jim-
ple [13] (an intermediate representation for Java bytecode)
produced from the bytecode of the application. TCA com-
putes the list of probes to be inserted and the corresponding
offsets (locations within the method) where they should
be inserted. The challenge is that the insertion of a probe
changes the Jimple code, and hence changes the offsets for
the probes yet to be inserted. To address this challenge,
TCA keeps track of the inserted probes, and recomputes the
offset for inserting each new probe. Another challenge is to
allow the analyst the flexibility to run in parallel different
dynamic analysis experiments, each with their own set of
probes on possibly different sets of loops. TCA must save
and reassemble the instrumented Jimple into bytecode to run
each dynamic analysis. To allow multiple dynamic analyses
in parallel, TCA clones the original project and saves the
updated, instrumented Jimple to the cloned project, while
preserving the original project being analyzed. The resulting
Jimple code is reassembled into bytecode using Soot [13].
Automation for Generating Driver Skeleton. To allow
the analyst to feed custom inputs for running the dynamic
analysis, TCA automatically generates a skeleton driver
program. The driver skeleton contains code to invoke the
instrumented bytecode to collect probe measurements. The
analyst updates the driver logic with a relevant workload.
For example, to measure a sort method’s complexity, an
analyst may choose the workload as arrays of different sizes
containing integers selected from a random distribution.
Automation for Complexity Reports. When the driver is
executed, it invokes the instrumented bytecode that collects
the measurements made by the probes for each workload.
For measurements collected via the wall clock timer, TCA
produces a plot of the workload size versus the measured
time. For measurements collected via the iteration counters,
TCA includes an engine for calculating a regression fit
of the observed number of iteration counts. Similarly to
existing tools [14], [12], TCA uses linear or power-law
models to fit the observed measurements and estimates

empirical complexity. In particular, TCA plots a graph of
actual measurements against the workload size on a log-log
scale using JFreeChart. The plot also reports the slope and
the R? error for the best fit obtained by the linear regression
engine (e.g., see Figure 3). A slope of m on the log-log plot
indicates the measured empirical complexity of n"™.

III. DETECTING AC VULNERABILITY USING SID ToOLS

This section describes a case study of how an algorithmic

complexity (AC) vulnerability in a web app is detected by
SID analysis using LCG and TCA. The case study app and
the underlying vulnerability are modeled after a DARPA
challenge from the Space/Time Analysis for Cybersecurity
(STAC) program [8]. The analysis for the case study was
done on the bytecode, but we include here some snippets of
decompiled code for the reader’s benefit.
App functionality: Blogger is a web application whose
Java web server implementation extends the NanoHTTPD
open source project. The app’s functionality includes user
sign in, creation of new blog posts and viewing of posts by
other users. The app consists of 2320 lines of Jimple code
(translates to 1800 lines of decompiled Java code).

A. Phase I. Automated Exploration

The loops in the Blogger app, their nesting depths and
the calling relationships between methods containing loops
are precomputed in Phase I of SID analysis.

B. Phase Il. Hypothesis Generation with LCG
Domain knowledge for generating hypothesis. The ana-
lyst begins auditing with some domain knowledge about web
server applications. A server application typically has one or
more threads (server listener) dedicated to listening for client
connections, and one or more threads (client request handler)
for parsing, processing and responding to client requests.
Starting with this domain knowledge, the analyst hypoth-
esizes an AC vulnerability to be in the client request handler
thread. For the possibility of an AC vulnerability in the
server listener, see Remark 1 at the end of this section.
By scanning the source code that initiates the threads, the
analyst identifies that each client request is processed in a
separate thread of type ClientHandler.
Using LCG to identify loops reachable from a method.
The analyst selects ClientHandler.run and invokes the
LCG smart view. As shown in Figure 2, the view shows
a graph of methods containing loops and starting from
ClientHandler.run. Nodes and edges of the LCG are color
coded as described earlier (Section II-A). For example, the
edge from ClientHandler.runto HTTPSession.execute is
yellow because the callsite to the latter is in a loop. As
seen from Figure 2, the LCG shows 16 methods containing
loops. Note that each method may contain multiple loops.
The analyst formulates the following hypothesis:

HYPOTHESIS. An AC vulnerability is caused by
one or more loops in the 16 methods in the LCG.

[=%2 NanoHTTPD

[=] GSimpleWebServer
[=]© ClientHandler

© serve

< run
_— call
call

call

@ respond

[=/& HTTPSession

execute
call

call

call @ canServeUri

= decodeHeader

= findHeaderEnd

= decodeParms

call

call
([URIVerifier

[=]© CookieHandler [=] /5/Response

unloadQueue

getHeader

= CookieHandler
= headerAlreadySent

[=]? DefaultTempfFile...

[=]% Method

@ sendBodyWithCorrectT...

@l + sendContentLength...
ssendBodyWithCorrectE..

call

= sendBody

Figure 2: LCG for the Blogger app

H Loop Headers by Method l Iterations H
NanoHTTPD.HTTPSession.findHeaderEnd.labell 4341
URIVerifier.verify.label5 2148
URIVerifier.verify.label3 1188
URIVerifier.verify.label 1 1074
URIVerifier.URIVerifier.label5 270
URIVerifier.URI Verifier.label 1 190
NanoHTTPD.HTTPSession.decodeHeader. Trap Region.label10 100
NanoHTTPD.Response.headerAlreadySent.labell 24
NanoHTTPD.CookieHandler.CookieHandler.label1 22
NanoHTTPD.Response.sendBody.label3 22
NanoHTTPD.HTTPSession.decodeParms.label2 16
NanoHTTPD.ClientHandler.run.Trap Region.label2 15
NanoHTTPD.Response.send.Trap Region.label6 12
NanoHTTPD.CookieHandler.unloadQueue.label 1 12
NanoHTTPD.Response.getHeader.label 1 12
NanoHTTPD.HTTPSession.execute. Trap Region.label6 11
NanoHTTPD.DefaultTempFileManager.clear.label 1 11
NanoHTTPD.Method.lookup.label 11

Table I: Iteration counts for loops exercised in the Blogger
app when the URLs “/”, “/test” and “/stac/example/Exam-
ple” are requested from a browser.

C. Phase IIl. Hypothesis Validation with TCA

TCA is used to confirm or reject the hypothesis as follows.
Probe instrumentation and dynamic analysis using TCA.
The analyst selects all methods containing loops in the LCG
and invokes the TCA menu option to instrument the loops
in the selected methods with the iteration counter probe to
compare resource consumption of various loops. TCA then
compiles the instrumented bytecode for the server into an
executable. The analyst starts the server (instrumented server
code), and passes three simple HTTP request URLs to the
server. Finally, TCA reports the number of iterations of each
loop in the LCG to the analyst (see Table I).
Follow-up on TCA results. Table I shows that after the
server processes three simple request URLs, two meth-

URIVerifier.verify Workload Profile, R2=0.86

Log(Iteration Count)
o e NN
N RO ® SN

=}

& o0 @
n

o
=)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Log(Workload Size)

W Measurements

Figure 3: Log-log plot of sum of iteration counts of the loops

in URIVerifier.verify vs. length of String parameter.

ods show an unusually large number of loop iterations

— HTTPSession.findHeaderEnd and URIVerifier.verify.
In particular,

URIVerifier.verify has three loops, so the
analyst clicks on the method in the LCG to go to its code
(Listing 1). The method has three loops at lines 5, 9, 11
respectively. The while loop pushes to and pops from the
list tuples in each iteration, and it is not clear whether the
loop will always terminate.

Probing a method with custom TCA drivers. The an-
alyst becomes suspicious about URIVerifier.verify, and
decides to instrument it and compute the iteration counts as a
function of systematically generated string inputs of increas-
ing length. From the TCA menu, the analyst selects the itera-
tion counter instrument for URIVerifier.verify. TCA gen-
erates a default driver with a call to URIVerifier.verify.
The analyst updates the driver to test the method with input
strings of increasing length from 1 to 30 (Listing 2). TCA
runs the driver and plots the sum of iteration counts of the
three loops (Figure 3) in the method. The plot shows that
this count is clearly exponential in the length of the string
parameter. The analyst then passes larger URL strings until
a point when the server stops responding at URL length 35.

Listing 1: Decompiled code for URIVerifier.verify
1 public boolean verify(String s) {

> Tuple peek;
3 LinkedList<Tuple> tuples = new

LinkedList<Tuple>();

4 tuples.push(new Tuple<Integer, URIElement>(...));
5 while (!'tuples.isEmpty() && (peek =

(Tuple)tuples.pop()) != null) {

6 if (((URIElement)peek.second).isFinal &&
((Integer)peek.first).intValue()==s.length())

7 return true;

8 if (s.length() > (Integer)peek.first)

9 for (

10 tuples.push(new Tuple<Integer,

URIElement>(...);

1 for (URIElement child :

((URIElement)peek.second).get(-1))

12 tuples.push(new Tuple(...));

4 return false;

15}

The analyst has thus identified the complex and hard-to-
understand loops in URIVerifier.verify as the root cause
of the AC vulnerability using SID analysis. The plot and
table of measurements produced by TCA collectively serve
as the evidence for the analyst to confirm his hypothesis that
Blogger has an AC vulnerability triggered by passing long
URL strings to the server.

Remark 1: The discussions in Phases II and III for de-
tecting the vulnerability in the Blogger app are based on
the analyst’s hypothesis that the code for processing client
requests has the vulnerability. However, the vulnerability
could also lie in the server listener, in which case the analyst
would go through similar steps in Phases II and III when
auditing the server listener code.

Listing 2: Driver with workload for URIVerifier.verify

1 public class CounterDriver {

2 private static final int TOTAL_WORK_TASKS = 30;

3 public static void main(String[] args) throws
Exception {

4 for(int i=1; i<=TOTAL_WORK_TASKS; i++){

5 RULER_Counter.setSize(1i);

6 URIVerifier verifier = new URIVerifier();

7 verifier.verify(getWorkload(1i));

8

}
9 tca.TCA.plotRegression(
10 "URIVerifier.verify Workload Profile",
1 TOTAL_WORK_TASKS) ;

13 private static String getWorkload(int size){

14 String unit = "a";

15 StringBuilder result = new StringBuilder();
16 for(int i=0; i<size; i++){

17 result.append(unit);

18

19 return result.toString();

20 }

2}

D. Search Space Reduction with LCG

Since detecting AC vulnerabilities is an open-ended
search through the app code, tools are important if they
can reduce the search space effectively. Let us look at the
results for this case study to understand how SID tools
reduce the search space. The Blogger app consists of 200
Jimple methods, of which 31 contain loops. In Phase II
of the detection process, the LCG helped the analyst to
narrow down the search to 16 of these 31 methods. These
16 methods are reachable from the entry point of interest
(the code executed by the ClientHandler thread). The
corresponding number of lines of Jimple code reduced from
2320 to 1197. Thus the LCG provided a significant reduction
(over 48%) in the amount of code potentially containing an
AC vulnerability that the analyst had to look at.

In Phase III of the detection process, the analyst was able
to narrow down the search space for the vulnerability even
further to 2 of the 16 methods (118 of the 1197 lines of
code) identified in Phase II (over 90% reduction) using TCA.
Finally, the total amount of code that had to be manually
examined by the analyst at the end of Phase III (between
the HTTPSession.findHeaderEnd and URIVerifier.verify

methods) was only 118 lines of Jimple code. Hence, using
LCG and TCA, the analyst only needed to consider about
5% of the code in the app to find the AC vulnerability.

E. Discussion

To be precise, AC vulnerabilities need to be defined with
respect to constraints for the input size and the resource
consumption it causes (e.g., an input of less than 100 bytes
causes the server to be busy for at least 300 seconds).
The current dynamic analysis capability by TCA can be
definitive to confirm or refute each hypothesis for time based
vulnerabilities. In the future, we plan to extend our tools
and techniques to detect AC vulnerabilities due to excessive
space usage. Specifically, we plan to augment LCG with
information regarding which data structures are accessed in
the loops, and TCA with probes to measure space (heap
memory) consumed by these data structures.

Although the LCG helps the analyst to form a hypothesis
by identifying loops as potential hotspots in the program
and their calling contexts, the SID analysis approach still
critically relies on the human analyst’s expertise and insight
in forming an effective hypothesis. The open question is:
what other tools and advances could significantly reduce
the human effort for deriving effective hypotheses?

IV. EDUCATIONAL USE OF SID ToOLS

The SID tools have a broader applicability to study
algorithmic complexity. Recently, it has been noted [15] that
“a number of important problems and algorithms for which
worst-case analysis does not provide useful or empirically
accurate results.” and the need to study “the performance
of an algorithm not only by its worst-case behavior but
rather by its behavior on ‘typical’ inputs.” SID tools are
valuable in this context. Students can use them to perform
experiments to learn about different aspects of algorithmic
complexity using a variety of interesting workloads and ob-
serve the corresponding empirical complexity. Students can
run experiments to compare empirical complexity computed
by TCA and theoretically computed asymptotic complexity.
We have designed and run such experiments for commonly
taught algorithms.

Learning by experiments is especially important for hy-
brid algorithms. For example, the widely used hybrid sorting
algorithm TimSort combines merge sort and insertion sort.
It’s complexity switches from that of binary insertion sort
to merge sort depending on the size of the input. The
students can observe this switching of complexity using
SID tools. The LCG for TimSort in Figure 1 shows how
multiple subroutines contribute to the complexity of the sort
method. Figure 4 shows TCA plots generated by selectively
instrumenting three methods from TimSort. It reveals an
abrupt change in behavior for one of the selected methods
at the workload size 32.

Empirical complexity can also help find and understand
subtle bugs in a given implementation of an algorithm. For

8| + binarySort u
5;‘7 umergeCollapse -)
;6 countRunAndMakeAscending A a®
E e)
c o Dﬁm
84
8 " o o
E o IR
] W™ et o L
22 G P W R

L = L R

0 2= aM 2 hoadond oo add Ak AL, LRy 'Y
0 10 20 30 40 50 60 70 80
Workload Size

Figure 4: Wall clock time for three methods in TimSort

example, implementations of TimSort in OpenJDK, Python
and Android were found to crash [16] for a specific input.

V. RELATED WORK

The worst case complexity for arbitrary programs is not
always computable (amounts to the halting problem). Static
analysis tools such as COSTA [5] and AProVE [6] formulate
and solve recurrence relations to compute the asymptotic
complexity or termination of loops. However, they only work
for a restricted class of loops [7], [17], [18], or do not
support Java bytecode [19].

Dynamic analysis approaches typically use benchmarks
or fuzzing techniques to provide input workload for the
program. Some dynamic analysis tools require the source
code (not always available) to add profiling information [12].
Recent tools and techniques for input-sensitive profiling [14]
automatically estimate the size of the input for generating
the workload for individual routines in a program.

The algorithmic profiling tool AlgoProf [20] introduced
the idea of algorithm profiling as supported by SID tools.
AlgoProf does not support several important capabilities we
have introduced such as selective instrumentation or inter-
active visualization. The most severe limitation of AlgoProf
is its overhead, both in terms of space and time. TCA’s
selective instrumentation helps overcome this limitation.

VI. CONCLUSION

This paper presents statically-informed dynamic (SID)
analysis to detect algorithmic complexity (AC) vulnera-
bilities in software. Specifically, the paper describes two
tools and their case studies. The tools are useful to explore
program loops and their structural and behavioral attributes.
The Atlas platform [9] is leveraged to integrate the two tools
and enable interactive visualization specifically designed to
understand programs with respect to their loops. The case
studies are: (a) a cybersecurity use to detect an AC vulnera-
bilities, (b) an educational use to analyze and learn different
aspects of algorithmic complexity through experiments.

ACKNOWLEDGMENTS

We thank our colleagues from Iowa State University and
EnSoft for their help with this paper. Dr. Kothari is the
founder President and a financial stakeholder in EnSoft.

REFERENCES

[1] S. A. Crosby and D. S. Wallach, “Denial of service via
algorithmic complexity attacks.” in Usenix Security, vol. 2,
2003.

[2] E. Adi, Z. A. Baig, P. Hingston, and C.-P. Lam, “Distributed
denial-of-service attacks against http/2 services,” Cluster
Computing, pp. 1-8, 2016.

[3] “XML denial of service attacks and defenses,’
https://msdn.microsoft.com/en-us/magazine/ee335713.aspx.

[4] A. M. Turing, “On computable numbers, with an application
to the entscheidungsproblem,” J. of Math, vol. 58, no. 345-
363, p. 5, 1936.

[5] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini,
“Costa: Design and implementation of a cost and termination
analyzer for Java bytecode,” in Formal Methods for Compo-
nents and Objects. Springer, 2008, pp. 113-132.

[6] M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl,
“Alternating runtime and size complexity analysis of integer
programs,” in Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2014, pp. 140-155.

[7] J. Ouaknine and J. Worrell, “On linear recurrence sequences
and loop termination,” ACM SIGLOG News, vol. 2, no. 2, pp.
4-13, 2015.

[8] “Space/time analysis for cybersecurity,”
http://www.darpa.mil/program/space-time-analysis-for-
cybersecurity.

[9] T. Deering, S. Kothari, J. Sauceda, and J. Mathews, “Atlas:

a new way to explore software, build analysis tools,” in

International Conference on Software Engineering. ACM,

2014, pp. 588-591.

T. Wei, J. Mao, W. Zou, and Y. Chen, “A new algorithm

for identifying loops in decompilation,” in Static Analysis.

Springer, 2007, pp. 170-183.

“TimSort,” http://bugs.python.org/file4451/timsort.txt.

S. F. Goldsmith, A. S. Aiken, and D. S. Wilkerson, “Measur-

ing empirical computational complexity,” in Foundations of

Software Engineering. ACM, 2007, pp. 395-404.

R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and

V. Sundaresan, “Soot-a Java bytecode optimization frame-

work,” in Conference of the Centre for Advanced Studies on

Collaborative research. 1BM Press, 1999, p. 13.

E. Coppa, C. Demetrescu, and 1. Finocchi, “Input-sensitive

profiling,” IEEE Transactions on Software Engineering,

vol. 40, no. 12, pp. 1185-1205, 2014.

M.-F. Balcan, B. Manthey, H. Roglin, and T. Roughgarden,

“Analysis of Algorithms Beyond the Worst Case (Seminar

14372),” Dagstuhl Reports, vol. 4, no. 9, pp. 3049, 2015.

S. de Gouw, J. Rot, F. S. de Boer, R. Bubel, and R. Héhnle,

“Openjdk’s java.utils.collection.sort() is broken: The good,

the bad and the worst case,” in Computer Aided Verification.

Springer, 2015, pp. 273-289.

A. M. Ben-Amram, S. Genaim, and A. N. Masud, “On the

termination of integer loops,” in Verification, Model Checking,

and Abstract Interpretation. Springer, 2012, pp. 72-87.

0. Olivo, L. Dillig, and C. Lin, “Static detection of asymptotic

performance bugs in collection traversals,” in ACM SIGPLAN

Notices, vol. 50, no. 6. ACM, 2015, pp. 369-378.

S. Gulwani, K. K. Mehra, and T. Chilimbi, “Speed: precise

and efficient static estimation of program computational com-

plexity,” in ACM SIGPLAN Notices, vol. 44, no. 1. ACM,

2009, pp. 127-139.

D. Zaparanuks and M. Hauswirth, “Algorithmic profiling,” in

Programming Language Design and Implementation. ACM,

2012, pp. 67-76.

(10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

